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The transition from quasiperiodicity to chaos in an NMR laser with delayed feedback is investigated
both experimentally and numerically. We concentrate on the low-delay-time region where stable tori
arise either from a sequence of two Hopf bifurcations or from an “interaction” between mutually
transversal unstable limit cycles. Transitions to chaos via intermittency and crises have been observed,

as well as the “fractalization” of tori.

PACS number(s): 05.45.+b, 76.60.—k

I. INTRODUCTION

The study of low-dimensional chaos in dissipative sys-
tems [1,2] has provided quite a complete understanding
both of the ways in which stable motion turns into
aperiodic, unpredictable behavior (“routes to chaos”
[3-5]) and of the structure of the chaotic attractors aris-
ing with these mechanisms [6,7]. In addition to a global
characterization of chaos through fractal dimensions
[8—11], entropies [12-14], and Lyapunov exponents
[15,16,1], a more detailed analysis based on the location
of unstable periodic orbits [17-19] and on the construc-
tion of the symbolic dynamics [20] has been successfully
carried out in numerical simulations and experimental
systems [21-23].

The study of these aspects of nonlinear systems (transi-
tions to chaos, global and local characteristics of the at-
tractors, and periodic-orbit structure) is much more
difficult whenever the dimension of the invariant set is
larger than just 3 or 4. This intermediate class of systems
has received relatively little attention, although the inves-
tigation of symbolic dynamics and thermodynamic prop-
erties [24-27,7,28,29] of the invariant measures is ex-
pected to reveal new interesting phenomena. Most of the
recent efforts have been directed toward spatially extend-
ed systems, which exhibit a large number of qualitatively
different kinds of behavior. In particular, the definition
of spatiotemporal chaos itself is still controversial
[30-33].

In the attempt to simplify the analysis of fully spa-
tiotemporal phenomena and take advantage of the experi-
ence made with low-dimensional systems, a class of mod-
el systems have been further introduced, namely, the so-
called coupled map lattices [34]. In those systems both
time and space are discretized so that connections with
real, continuous systems are not immediate. Dynamical
behavior unfolding in medium- and high-dimensional
phase space can, however, be generated by experimental-
ly realizable continuous systems as well, without involv-
ing any spatial dependence. The best known example is
provided by delay differential equations of the form
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x=F(x(t),x(t—71)), (1)

where F: R®—R? is a nonlinear function, xER¥ is the
state variable, and 7 is the delay time. Models of this
type naturally arise in various fields, such as optics
[35,36], biology, and physiology [37]. Since the future
evolution depends on a continuous range of x values [all
those in the time interval (—7,0)], the dimension of phase
space is infinite. It has been proved, however, that the at-
tractors are finite dimensional, under rather general as-
sumptions [38] (see [39] for a related conjecture). The di-
mension has been shown to increase proportionally to 7
for 7— o0, while the values of the Lyapunov exponents
decrease as 1/7, so that the metric entropy (related to the
integral of the positive part of the Lyapunov spectrum)
converges to a finite value [40]. These results have been
confirmed in [41] for a continuous system and in [42] for
delayed maps.

In the present work, we investigate bifurcation struc-
ture and transitions to chaos in a nuclear-magnetic-
resonance (NMR) laser [23] for which a mathematical
model is available in the form of a low-dimensional set of
ordinary differential equations [43,21]. Previous investi-
gations focused on low-dimensional chaotic behavior, ob-
tained by periodically modulating some system parame-
ter. The extraction of the unstable periodic orbits and
the analysis of the symbolic dynamics obtained from
them have revealed that a set of modified Bloch-type
equations proposed in [43] reproduces the experimental
observations with great precision. Hence the NMR laser
represents an ideal system to study the effect of a delayed
feedback on a nonlinear device, both experimentally and
theoretically (see, for example, [44]). In particular, we
present a detailed linear stability analysis for the basic
Hopf bifurcation and give evidence for intermittency,
crises, and torus breakup via a “fractalization” process.
Attractors with dimension larger than 3 have been ob-
served also in the short-delay region.

II. EXPERIMENTAL SETUP

A laser consists of three main parts: the radiating par-
ticles, the radiation field produced by them in a resonant
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structure (cavity), and a mechanism to achieve popula-
tion inversion. For the NMR laser, the active particles
are the *’Al nuclear spins (/=3) in ruby crystal
Al,04:Cr ™3 subjected to a static magnetic field B, of the
order of 1.2 T. The radiation field corresponds to the
magnetization M, transverse to the field B, produced by
the nuclear spins. The ruby crystal is placed within a coil
that is part of an inductance-capacitance (LC) circuit,
providing feedback for the radiation field. This LC cir-
cuit represents the cavity of the laser. Spin inversion is
obtained by means of dynamic nuclear polarization [45].
By shining microwaves (v~30 GHz) at Cr*3, electronic
transitions are caused that pump the nuclear spins to the
lasing state. The induced voltage in the LC circuit is
tapped at the capacitive voltage splitter (C,,C,) (Fig. 1),
demodulated, and amplified, thus providing the laser out-
put v (¢). As will be shown below, the NMR laser can be
described by a set of only two differential equations under
the experimental conditions chosen in our investigation.
To make chaotic behavior possible an additional degree
of freedom is necessary. Experimentally, this is realized
by varying a system parameter in time. In our case, the
resistance of the LC circuit is varied, thus changing its
quality factor Q. This is done with the help of a p-i-n
diode (see Fig. 1), the resistance of which depends on the
voltage v, ;, applied to it. The influence of the p-i-n-
diode on the quality factor is expressed by

Q(t)=Qo—pu,.;,(t) . (2)

where the sensitivity p has been determined experimental-
ly and Q,, is the unperturbed quality factor.

The p-i-n diode is driven by the output signal of the
laser, delayed as follows. The laser signal is digitized,
stored in a memory buffer, and fed back into the electron-
ic circuitry after the chosen delay time 7. As a result,

v ()=v(t—T) . (3)

p-i-n

The application of Faraday’s law for the voltage induced

klystron CL[_
7 =
e,

A
2
BO
*D]

FIG. 1. Schematic representation of the experimental setup
for the ruby NMR laser with delayed feedback. The gain medi-
um consists of the nuclear spins of the Al nuclei within a ruby
crystal that is subjected to a static field B,. Population inver-
sion is obtained by dynamic nuclear polarization with mi-
crowaves supplied by a klystron. The resonator is composed of
a coil L, a capacitive voltage splitter (C;,C,) and a tuning capa-
citor C, and a variable resistor (p-i-n diode). The laser output is
fed back to the p-i-n diode after a delay time 7.

ruby crystal
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in the coil and of Kirchhoff’s laws for the LC circuit
yields

v()=8um ANw, Q(1)|M,(2)] , (4)

where § is an amplification factor, u, the permeability of
free space, 7 the filling factor, 4 the cross section of the
coil, N the number of its windings, and o, the laser fre-
quency v, times 27 (see Table I).

To simplify the notation we define g (¢)=Q (¢t)/Q, and
e=p8uyn ANw,, which leads to the equation

q(t)=1—eq(t—7)|M,(t —7)| (5)

for g(t). Hence the feedback mechanism not only
renders the dynamics dependent on past values of the
variables but also induces a “recursive” structure in Q (2).

III. LINEAR STABILITY ANALYSIS

The single-mode dynamics of the NMR laser in a suit-
able rotating frame is accurately reproduced by the ex-
tended Bloch model (EBM) [43,23]

Bu = '_KBu _XMD ’
M,=—y.M,(1+alM,|/3)+9%M,B, , ©

M,=—y((M,—M,)—gM,B, ,

where B, is the transverse component of the radiation
magnetic field and M, and M, are, respectively, the trans-
verse and longitudinal components of the nuclear magne-
tization. The parameters k, ¥, and y are phenomeno-
logical damping constants, g is the gyromagnetic ratio of
the 2’Al spins, and a is a coefficient that accounts for
nonlinear effects in the relaxation mechanism for the
transverse magnetization. The decay rate « of the field
B, is given by

)
K=—""—"— N
20(1) °
where o, =2mv, and v, is the laser frequency. The
values of the various system parameters are reported in
Table I.
The laser equations can be rewritten in a more con-

TABLE 1. Experimentally determined NMR laser parame-
ters for standard running conditions.

NMR laser parameters Value Unit
gyromagnetic ratio g 6.97 X107 1/sT
quality factor Qg 310
static NMR field B, 1.109 T
laser frequency v, 12.3X 108 Hz
pump magnetization M, —0.75 A/m

longitudinal pump rate v 4.76 /s
transverse decay rate 2.38X10*  I/s

EBM dephasing coefficient a 0.607 m/A
filling factor 7 0.42

coupling constant Y 10.19 Tm/As
number of windings N 30

cross section of the NMR coil 4  47.746X10™¢ m?
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venient form by introducing the adimensional variables

x=3/—g-Bu, y=—28M,, z=68(M,—M,), @
1

with B=3gxQ,/(w.v,). By taking the derivatives with
respect to the adimensional time ¢t'=ty,, the EBM equa-
tions read

x=—0o'[x/q'(t")—y],

y=—y(l+ay)+rx—xz , 9)
z=—bz+xy ,

where
q'(t")=1—€q'(t'—7")yt'—7) (10)

is the reduced quality factor g, expressed as a function of
t', and € =€/2B. The parameters in Eq. (9) have the ex-
pressions

[ —

P r=6B8|M,|, a=a/6B, p="1
2007, Y1

In order to simplify the analysis, it is useful to normalize
the variables x, y, and z to the fixed-point values

(11)

x=y=x,=xVb(r—1), z=zy=r—1 (12)

of the Lorenz system (@ =€'=0, r > 1) according to
(XY, Z)=[x/x4,y/%x4+,(z—245)/x ] (13)

and to introduce a time t =x ¢’ [not to be confused with
the physical time appearing in Egs. (2), (4), and (5)], so
that

X=—0[X/q(t)—Y],
Y=—Y(A+aY)+X(A4—-2), (14)
Z=—BZ—1+XY,

where
q(t)=1—gq(t —7)Y(t—171), (15)
with e=€x, €[0,3X1072),0=0"/x, ~494,

A=x7'~101.32, a=~0.301, and B=b/x, ~2.0265
X 1072, Since the parameter o is much larger than any
other damping constant (1 for Y and B for Z), the X vari-
able quickly relaxes to its regime value Yg(¢) and can be
adiabatically eliminated. In the resulting system

Y=—Y[A+aY+qUuNZ —A4)],

. (16)
=—BZ—1+q()Y?,

it is readily noticed that the variable Y never changes sign
since its derivative vanishes with Y itself [for this reason,
no absolute value has been taken for the y variable al-
ready in Eq. (9)]. The most natural variable to use is
hence S =InY, which finally yields the desired form

S=—A—aeS+q(t)(A—2Z),

. (17
Z=—BZ—1+q(t)e?.
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When the control parameter € is zero, the system admits
a stable fixed point, which, upon increase of €, gives rise
to a limit cycle at a value e; =€ (7), where a Hopf bifur-
cation occurs. In order to study this phenomenon analyt-
ically, we consider not only € but also a and B as small
parameters, while 4 >>1. To order O (i.e., a =e=0), the
system can be rewritten in the form of a damped Toda os-
cillator

S=P, P=—BP+1—e%, (18)

where P= —Z and the potential is ¥ (S)=e?5/2—S. The
eigenfrequency w,=V2 at the fixed point
(Sg,Z,)=(0,0), for B =0, corresponds to a physical
eigenperiod of 18.9 ms, the scaled one being
To=2w/wy=4.44. The order-1 coordinates (S;,Z,) of
the fixed point are obtained by setting

s

g=q;=1—eqe’’
and by retaining terms with magnitude up to approxi-
mately 1073 (e.g., a?B or 2 4):

AB—1 aB
T 2 2 (19
le—a+a2§—As—§+aeAB+e2Aﬂll— .
Substituting
S=S,+seM, Z=2Z +¢geM, g=gq,+ceM
into Eq. (17) and carrying out all necessary

simplifications to the appropriate order in €, a, 4, and B,
one arrives at the equation
28

—2gfe”"

A+B= 35 5 ,
Aege e M+ae '+ A

(20)

which yields A implicitly in terms of the two control pa-
rameters € and 7. It is readily verified that the instability
threshold A=0 cannot be attained with real A. Hence the
bifurcation of the fixed point (S,,Z,) is of the Hopf type,
that is, A=A'+iA" is a complex eigenvalue of the system.
When its expression is substituted into Eq. (20), one ob-
tains two coupled equations that have to be solved for a
function €(7) by imposing the marginality condition
A'=0. As a result, one obtains the bifurcation curve of
the fixed point in parameter space (7,€) and the frequen-
cy A'(7)=w(7) of the limit cycle arising from the bifur-
cation. Owing to the presence of the trigonometric terms
sinlwt) and cos(wT) in the stability equations, the solu-
tions &(7) and w(7) are families of curves, as can be seen
from Fig. 2, in which we report the results of a numerical
evaluation of the eigenvalue equation (20). The actual bi-
furcation curve €5(7) is the continuous one that joins the
lowermost intersection points of adjacent members of
such families, since it marks the instability of the fixed
point as soon as it is reached upon increase of €. The
open circles in the figure have been obtained with a direct
integration of the differential equations (17), while the full
triangles correspond to experimental values. The corre-
sponding symbols in the lower figure show that a frequen-
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cy jump occurs at 7=7, =kT, when the new solution
(limit cycle) appears just beyond the next branch of the
bifurcation family. Hysteresis may occur, but it has not
been resolved experimentally. For related phenomena see
[46].

IV. FORMATION AND BREAKUP OF TORI

The phenomenology of the delayed NMR laser can be
discussed with reference to Fig. 3, where the delay-
amplitude parameter space (7,€) is represented in the
short-delay domain. In addition to the Hopf-bifurcation
curves discussed above, we display the main regions of
stable periodic behavior with a gray coding. Figure 3(a)
has been obtained with a numerical integration of Eq.
(17) whereas 3(b) shows the corresponding experimental
data (experimental units are used everywhere); an en-
largement of the framed area in 3(a) is displayed in 3(c).
The white region in Figs. 3(a) and 3(b) indicates the stable
fixed point and the light gray one the Hopf limit cycle:
notice the agreement between the numerical integration
and the linear stability analysis. The darker areas denote
higher-order periodic solutions and aperiodic motion.
The upper left part of each “tongue” (coded in medium-
dark gray) corresponds to a period-2 orbit. On the right
of the tongues, for € approximately in the range (0.5,0.7),
one observes periodic orbits of increasing length: period
two in the first tongue [medium gray in the enlargement
(c)], period three in the second (black), and so on. The
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FIG. 2. Results of the linear stability analysis: (a) amplitude
e of the feedback signal as a function of the delay time 7 at
which the fixed point undergoes a Hopf bifurcation; (b) frequen-
cy o of the limit cycle arising from the bifurcation, versus 7.
The open circles correspond to the numerical integration of the
EBM and the triangles to the experiment.

extension of all these “flanking” regions reduces with in-
creasing order of the tongue. In the interior of the
tongues one observes quasiperiodic (two-frequency tori or
2-tori) and chaotic motions, which become “generic” for
large delay times [no chaos occurs, however, within the
enlargement of Fig. 3(c)]. The fractal dimension, estimat-

€(Am)

FIG. 3. Overview of the phenomenology in
parameter space (7,€). The gray coding corre-
sponds to the number of different maxima
detected in a fixed finite portion of the signal.
The white region corresponds to the stable

fixed points, light gray to a stable limit cycle,
and darker regions to signals with increasing
number of different maxima (including chaotic
behavior): (a) model, (b) experiment, and (c)

(c) enlargement of the boxed area in (a).
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ed with the nearest-neighbor method [10,47], never
exceeds 4 for short delay but can be larger than 3.

As a further illustration of the type of attractors exhib-
ited by the system and of the accuracy of the EBM, we
show in Fig. 4 two stable limit cycles, one torus, and a
chaotic attractor, reconstructed from experimental (left)
and numerical (right) time series {v(n)}, where
v(n)=v(nAt) and At is a sampling time of the order of 1
of the length of the period-1 cycle. They are observed
when moving horizontally across the third tongue of Fig.

v(n+10)

0.0 0.5 1.0
v(n)

FIG. 4. Two-dimensional projections of the laser output
v(n)=v(nAt), suitably rescaled and embedded using a sam-
pling time At of the order of % of the length of the period-1 cy-
cle. The orbits are observed at a fixed value of the feedback am-
plitude €=0.5972 and at four values of the delay time 7 (from

top to bottom): 0.074, 0.077, 0.079, and 0.083 s. Left column,
experiment; right column, model.
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3 from left to right at €=0.5972.

Tori do not appear only well inside the tongues but
also in the vicinity of the cusps of the Hopf bifurcation
curve. The formation of one such torus is illustrated in
Fig. 5 for a delay 7=13.34 (0.0565 s), that is, slightly on
the right of the third cusp from the left in Fig. 3. For low
values of the feedback amplitude (e.g., €¢=0.004 68), one
observes the limit cycle C,, which then bifurcates to a 2-
torus (T), displayed here for €¢=0.004 685. By further
increasing € to 0.004 69, one obtains the torus 7T, shown
on the right in the figure. In turn, T, undergoes an “in-
verse” bifurcation to the torus T,, displayed for
€=0.004 694 5. A further increase of € to 0.004 695 final-
ly yields the limit cycle C,. It must be noticed that C,
and T, are transversal to C, and T,. In fact, when the
minor axis of T, gets sufficiently large, the trajectory
starts experiencing the motion in the “direction” of C,
and T, appears. In the competition between the two
directions, the second one survives for larger € values.
The two extreme cycles of this process belong to the
light-gray regions to the right (C,) and to the left (C,) of
the above-mentioned cusp. The two frequencies of these
cycles and of torus T, are those found with the linear sta-
bility analysis: they belong to the two adjacent (7,w)
curves (Fig. 2, bottom) at which the third jump occurs.
The two frequencies of tori T; and T, are only slightly
different. These solutions come arbitrarily close to each
other at the cusp. In the large-r limit, the frequency
jumps become smaller and smaller: both the bifurcation
frequency and the bifurcation line tend to a constant.
Qualitatively different types of attractors may then occur
as shown in Ref. [48], where the appearance of “defects”
has been documented in a spatiotemporal representation
for delay systems. We have observed attractors with rela-
tively large dimension (above 4), which, however, are not
studied here for reasons of brevity.

In order to discuss the nature of the transition into
chaos, let us first consider the bifurcation diagram
displayed in Fig. 6, where we report the local maxima of
the time series, recorded at €=0.009 for 7 in the range
(15.3,19). Notice the bifurcation of a period 2 to a torus
at 7~16.4. Windows of periodic motion (“locked”
states) occur within the initial quasiperiodic regime,

FIG. 5. Three-dimensional representations of stable regular
attractors at 7= 13.34. Mutually transversal (limit cycle, torus)
pairs, observed below (C,,T,) and above (C,,T,) the torus T,
are displayed on the left. They occur at the parameter values
£=0.00468 (C,), €=0.004685 (T,), £=0.00469 (T,),
£=0.004 694 5 (T,), and €=0.004 695 (C,).
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15.5 16.0 16.5 17.0 17.5 18.0 18.5
T

FIG. 6. Bifurcation diagram of the NMR laser at £¢=0.009,
computed from the model. The bifurcation parameter is the
adimensional delay time 7. Notice the tori arising from Hopf
bifurcations at both extrema of the diagram.

which apparently ceases because of a sudden transition at
7~16.938 (point A, in the figure). In order to illustrate
this phenomenon, we took a Poincaré section X in
embedding space, as shown in Fig. 7 for the torus at
7=16.6. The attractor existing just to the left of 4,
yields, in 2, the closed bean-shaped curve appearing in
the central part of Fig. 8. Upon a tiny increase of 7, this
solution becomes unstable and the system lands, after a
transient also displayed in Fig. 8, to a new stable torus
that intersects = at the points forming the outer closed
curve in Fig. 8. Five sets of transient points have been
put in evidence by joining their members with continuous
lines to show the direction of the trajectories: a point in
one of these sets is mapped to one of another set and so
on until its image returns to the original set, at a larger
distance from the inner torus. The direction of the spiral-
ing motion is further indicated by arrows. Hence this

FIG. 7. Three-dimensional representation of the torus ap-
pearing at €=0.009 and 7=16.6 (see Fig. 6). The plane yielding
the Poincaré section is shown.
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-0.2 : : : ! :
2.6 -1.6 -0.6 0.4
FIG. 8. Intersection of the torus existing at the left of point
A, in Fig. 6 with the Poincaré section (bean-shaped closed
curve in the middle). The same arbitrary scale has been used for
the two axes (which correspond to linear combinations of the
coordinates in embedding space). Upon little increase of the de-
lay time 7, this torus becomes unstable and a new one (large
closed curve) appears after a transient, also displayed in the
figure (large dots). To guide the eye, five outgoing paths have
been drawn explicitly with arrows.

transition is an intermittent one. For completeness, we
show the circle maps (Fig. 9) corresponding to the two
tori [(a) for the inner one and (b) for the outer one] ob-
tained by choosing a point on = [at (—0.25,1.2) in an ar-
bitrary logarithmic scale for the variable S] and plotting
pairs of consecutively occurring angles, calculated with
respect to a fixed reference direction. Although the re-
sulting curves are close to the diagonal, no “angular” in-
termittency occurs. The instability is associated with the
radial direction. The torus generated at A4, changes its
shape upon increase of the delay time, collapses to a
period-17 stable cycle, reappears, and finally takes the
shape displayed in Fig. 10(a). At this point, just to the
left of 4, in Fig. 6 (r=17.1037), the torus lies close to
the stable manifold of the period 17, which, in the mean-

1
/—'“""_/

///

O (n+l)

) (a) (b)

0 10 1
© (n)

FIG. 9. Circle maps for the tori in Fig. 8: (a) the smaller
torus and (b) the larger torus. The angle ©,(mod2) has been
computed using the same origin and reference direction for the
two pictures.

0
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(@) (b)

FIG. 10. Evolution of the larger torus of Fig. 8 upon increase
of the delay time 7: (a) 7=17.1037, (b) 7=17.1274, and (c) and
(d) 7=17.1345 (see point A, in Fig. 6). The coordinates are
chosen as in Fig. 8. In (b), the torus is doubled and presents a
large number of smooth folds, some of which can be seen in the
enlargement. In (c), the torus has collided with the stable mani-
fold of an unstable period-17 orbit and turned into a strange at-
tractor. The enlargement in (d) shows a large but finite number
of sharp bends and reveals a finite width of the transversal sec-
tions of the attractor.

time, turned unstable. After a doubling, the torus ap-
proaches further that manifold [see Fig. 10(b), showing
the torus at 7=17.1274]. The enlargement of part of the
attractor helps verify that still a smooth curve is ob-
served. Finally, at 7=17.1345, the collision of the torus
with the stable manifold of the period 17 has taken place,
with a consequent repulsion along the unstable manifold
and the creation of homoclinic intersections. The result-
ing strange attractor and a magnified portion of it are
displayed, respectively, in Figs. 10(c) and 10(d). Notice
that the attractor indeed has a transversal structure with
a finite diameter. The curve at the transition point, al-
though reminiscent of a fractal, does not present truly
sharp bends at all scales. It is natural to conjecture, how-
ever, that fractalization of tori at the chaotic transition
becomes generic for large delay times.

Finally, we briefly illustrate the structure of the strange
attractor existing at point 4, in Fig. 6. Its Poincaré sec-
tion, a projection of which is displayed in Fig. 11, clearly
shows that its dimension is larger than 3: in fact, the pic-
ture reveals a complicated topology with folds and holes
typical of an object embedded in an at least three-
dimensional space. Indeed, a dimension estimate, carried
out with the nearest-neighbor (NN) method [10,47],
yields the result D(0)=~3.3 for the information dimen-
sion. The results of this analysis are shown in Fig. 12. In
Fig. 12(a) we report the logarithmic average of the dis-
tance 8 to the kth NN as a function of the number of
points n on the attractor (logarithms to base 1.18 have
been used), for embedding dimension E between 1 and 15
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1.4 t

0.4

0.6 . : —~
-3.5 -2.5 -1.5 -0.5 0.5
FIG. 11. Poincaré section of the strange attractor existing at
point A, in Fig. 6. The coordinates are chosen as in Fig. 8.
Notice the higher-dimensional topology of this set, clearly visi-
ble also in this two-dimensional projection.

and NN order k =40. In Fig. 12(b) the dimension esti-
mates are plotted versus the embedding dimension for
k =10, 20, 30, and 40: these values have been obtained
from the slopes of the curves in Fig. 12(a), computed in
the asymptotic regime (log n =60), except for E =1,
where 40=<logn <50. Notice the good convergence of
the data with increasing embedding dimension.

The point at which the information dimension D (0)
becomes larger than 3 has not been precisely located yet.
As may be observed in Fig. 6, a sharp transition takes
place at 7~ 17.2, with structural changes in the attractor.
An analysis of this transition, performed with the help of
the Lyapunov spectrum, is therefore deferred to future
investigations.

V. CONCLUSIONS

We have studied an experimental system with delayed
feedback, applied at parameter values that do permit
chaotic motion. The effect of the increase of phase space
was to yield limit cycles of all periods, two-frequency
tori, and chaos. The accuracy of the extended Bloch

. 3.2
e
A o
) . 28
o B=]
o 7]
[ =4
A% 224
[}
(a) \\\\n 20 (b) o ]
°© 40 50 60 2 6 10 14
log n Embedding Dimension

FIG. 12. Results of the dimension analysis for the attractor
of Fig. 11. In (a), we report the logarithmic average of the dis-
tance 8 between a point and its 40th nearest neighbor (NN)
versus the logarithm of the number n of points on the attractor
for embedding dimension E between 1 (bottom) and 15 (top).
Logarithms are to base 1.18. In (b), the estimated information
dimension D (0) is plotted as a function of the embedding di-
mension for NN order k =10,20,30,40 (from the bottom). The
asymptotic value is D(0)=3.275+0.025.
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laser model has been confirmed also in these operating
conditions. Moreover, the model has allowed us to fol-
low very closely a few interesting transitions, including
the breakup of a torus with a complicated fold structure,
with a precision that cannot be achieved experimentally.
Finally, we presented a strange attractor with dimension
higher than 3 and an interesting topology.

The phenomenology observed in this paper suggests
deepening the study by considering the periodic-orbit
structure of the system and constructing the symbolic dy-
namics of the higher-dimensional attractors that are gen-
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erated already for relatively short delay times. Moreover,
the relationship between the Lyapunov exponents and the
passage of the dimension through the value 3 deserves
particular attention since universal features might ap-
pear. We plan to address these issues in a future paper.
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FIG. 3. Overview of the phenomenology in
parameter space (7,€). The gray coding corre-
sponds to the number of different maxima
detected in a fixed finite portion of the signal.
The white region corresponds to the stable
fixed points, light gray to a stable limit cycle,
and darker regions to signals with increasing
number of different maxima (including chaotic
behavior): (a) model, (b) experiment, and (c)

(c) enlargement of the boxed area in (a).



